
 1 

Best Practices in Event Data Coding:  

Improving Coding Quality in the Electoral Contention and Violence (ECAV) Data 

 

Elio Amicarelli 

Ursula Daxecker 

University of Amsterdam 

 

Introduction 

The Electoral Contention and Violence (ECAV) project collects event data on election-related 

contention for all countries with competitive elections for the 1990-2012 period (Daxecker, 

Amicarelli, and Jung 2019). The disaggregation turn in conflict research has increased the 

attractiveness of event data because researchers can use them at the level of analysis most 

appropriate for their research design. While reporting bias is frequently recognized as a 

challenge in coding events from news reports (Hoglund and Oberg 2011; Chojnacki et al. 2012; 

Urdal 2008; Weidmann 2016), less attention is usually paid to coding reliability and validity. 

Yet as Ruggeri, Gizelis, and Dorrussen (2011) demonstrate, even if events are reported, and 

are reported accurately, important concerns remain regarding the quality of event data. The 

coding of events from news consists of two important steps; first that coders identify the same 

events from sources, and second that they interpret events similarly. For a project like ECAV, 

coders’ ability to identify and encode events as outlined in the coding scheme is thus crucial to 

produce high-quality data. This research note aims to provide more detail and hence 

transparency about the process of event identification and encoding than other event data 

coding projects.  

In this paper, we first discuss the objectives and strategy to assess event identification 

and encoding in the ECAV project. We then present a detailed assessment of event 

identification, followed by an assessment of coding reliability and validity. We conclude with 

recommendations on the usefulness of such assessments for coding scheme improvements and 

the training and selection of coders.  

 

Objectives and Strategy 

ECAV extracts large numbers of events from a very large number of news articles. ECAV 

includes more than 18,000 events extracted from almost 220,000 articles. Unlike other event 

data projects using machine coding (e.g. KEDS, El Diablo), the project relies exclusively on 

human coders. The coding process for event data requires that coders perform two important 
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steps, namely (1) identifying events of interest and (2) encoding each event with the above-

discussed variables following a set of pre-established coding rules.  Human coders can vary in 

their ability to correctly identify and encode events.1 An assessment of coder quality is thus of 

crucial importance to ensure that they perform similarly in event identification and encoding. 

Soon after 11 coders were recruited for the project, we developed an operational 

strategy to assess coding quality. To assess event identification and encoding, we created a 

dataset consisting of more than 100 ECAV events for the 1991 elections in India. This dataset 

was then used as a benchmark to assess coders' performance. We refer to these data as the 

Identification Gold Standard (IGS, the benchmark used in Stage 1) and Coding Gold Standard 

(CGS, the benchmark used in Stage 2). Throughout this process, coders were not told that the 

procedure was a test of their coding quality, but rather were informed that we were 

implementing a new procedure for the cross-validation of existing data. The exercise was 

conducted after coders have received the initial coding training, but before they started actual 

coding. The assessment phase took approximately two weeks of full-time work per coder. 

Results were used to improve the coding procedure, to provide extra training to coders based 

on their performance, and to inform decisions on coder retention. We discuss the assessment 

of both stages in detail.  

 

Event Identification 

To translate news text into ECAV event data, human coders are assigned a set of news articles. 

Coders read these articles and identify events relevant for the project. In this process, coders 

may fail to identify relevant events (false negatives) or may mistakenly identify irrelevant 

events (false positives). To assess performance, all coders were provided with the same set of 

articles for the 1991 elections in India and were asked to identify relevant ECAV events.2 The 

events identified by each coder were then matched with the events in the Identification Gold 

Standard (IGS).3 A binary vector containing a set of True Positives (coded as 1s) and False 

Negatives (coded as 0s) was then derived for each coder. This binary information was then 

used to calculate the following identification performance measures for each coder.  

 
1 There can be several causes for variation in coder ability such as a) different levels in the understanding of what 

has to be considered an event of interest, b) how the coding rules should be applied in order to translate the news 

reporting in machine-readable variables and c) the effort each coder puts in doing his or her job. Each of these 

can jeopardize the quality of the data. 
2 For each identified ECAV event, coders use a spreadsheet where they record a) the relevant text snippet 

containing the event and b) the title, date and unique identifier of the article containing the text snippet. 
3 The IGS was based on hand coding by the PIs of the project.  
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- True Positive Rate (TPR): The TPR is the rate of correct identifications. The TPR 

ranges from 0 to 1. TPR equals 1 if a coder correctly identifies all ECAV events of 

interest; conversely, it equals 0 when a coder fails to identify any ECAV events of 

interest.4 

- Precision (Prc) is the rate of identifications that turn out to be correct. Precision equals 

1 if a coder is correct every time he or she identifies an event; conversely, it equals 0 

when a coder is always wrong when identifying events. Unlike TPR, Precision is thus 

not sensitive to false negatives.5 

The anonymized TPR and Precision results are showed in Figure 1. For both measures, 95% 

bootstrapped confidence intervals were calculated using the percentile method on 5000 

bootstrap samples. The dashed grey line placed at a performance value of 0.5 represents the 

expected TPR performance of a balanced binary classifier producing random guesses.6  

 

Figure 1: Individual True Positive Rate and Precision for 11 ECAV coders 

 

As shown in Figure 1, coders 1, 2, 3, 4 and 9 have TPRs between 0.6 and 0.68 while coders 

5,7,8,10 and 11 are between 0.5 and 0.59. The TPR for coder 6 is 0.42, the lowest in this set. 

A TPR of 0.42 means that coder 6 is correctly identifying 42% of the actual ECAV events 

 
4 𝑇𝑃𝑅 = 𝑃(𝐶𝑖 = 1|𝐼𝐺𝑆 = 1) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 
5 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃(𝐼𝐺𝑆 = 1|𝐶𝑖 = 1) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 
6 We emphasize that the confidence intervals can be examined against the random theoretical expectation 

regardless of the degree of class imbalance only for the TPR  (except for the unlikely case where the Gold Standard 

would only contain zeros), but not for Precision. 
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contained in the IGS.7 Despite the fact that coders 1, 2, 3, 4 and 9 are those doing a better job 

in identifying ECAV events, the maximum TPR is 68% (coder 3). This suggests that there is 

room to improve the identification ability of all coders, even those who performed better during 

this exercise.  

Except for coder 3 and coder 9, the point estimates for Precision are always higher than 

the respective TPR estimates. This suggests that most coders are more prone to produce false 

negatives than false positives. Because of this, particularly attention should be paid in advising 

coders 3 and 9 on how to avoid mistakenly identifying events that are not ECAV events (i.e., 

reduce false positives), while the other coders should get help in improving their ability to 

identify ECAV events they have missed (i.e., reduce false negatives).  

 

Event Encoding: Reliability  

We proceed to examining the reliability and coding validity of ECAV variables encoded from 

events. For this exercise, coders were provided with 117 identical event descriptions from the 

CGS and were asked to encode all ECAV variables based on these descriptions.8 We then 

assessed the degree of agreement among coders (intercoder reliability) and the ability of each 

coder to correctly encode the relevant information by comparing it to the Coding Gold Standard 

(coding validity). We begin with an assessment of reliability. Following the best practices in 

this field (Neuendorf 2002), intercoder reliability is evaluated globally and individually for 

each of nine ECAV variables of interest. For each variable, the evaluation is performed by 

comparing two levels of inter-coder comparison, namely the global and individual level.9 The 

global analysis is focused on summarizing the reliability of each variable, whereas the 

individual level disaggregates reliability information at the coder level, which allow us to 

examine the relative contribution of each coder to global reliability scores. To conserve space, 

we present results from the global exercise in the manuscript, while individual analyses are 

presented in appendix C. 

 
7 Notice that the random classification threshold (grey line in Figure 1) falls within the TPR confidence intervals 

for coders 5, 6, 7, 8, 10 and 11. Because of this, we cannot be confident that identification performance of these 

coders is actually better than a randomized binary classification. 
8 To be precise, we asked coders to encode all variables that require assigning numerical values. For variables 

where coders assign strings (e.g. location name, event name), calculating reliability and validity scores is not 

really useful. 
9 For all calculations, categorical variables in ECAV are treated as nominal. While the majority of the variables 

are expressed on a nominal scale, this is not the case for Location Precision, Participant Number and Participant 

Deaths which have a clear order among their categories. Analyzing these variables as if they were nominal is not 

incorrect, but rather is a conservative choice in order to not inflate the results by blurring the boundaries between 

categories. 

 



 5 

 

Global Reliability 

For global comparisons for all 11 coders, we use averaged Cohen's kappa, Fleiss's kappa, and 

Krippendorff's alpha for more than two coders. The comparisons between pairs of coders are 

performed using Cohen's kappa, Scott's pi, Krippendorff's alpha for two coders (results in 

appendix C). These measures are among the most prominent introduced in the reliability 

literature and are considered better options than more naive Percent Agreement measures. The 

measures differ on how they are factoring in the expected probability of random agreement 

among coders (see Appendix C for more details on this aspect). We use several measures to 

increase transparency of the results presented and to minimize the dependence on a single 

particular metric. Except for Krippendorff's alpha, all metrics vary from -1 to 1 with -1 

representing a level of perfect disagreement, 0 representing agreement no better than chance, 

and 1 signaling perfect agreement. Krippendorff's alpha varies from 0 to 1, with 1 representing 

the highest level of agreement.  

There is no common standard regarding a good level of agreement, but the literature 

nevertheless identifies some “rules of thumb.” For example, Fleiss (2013) suggests that values 

of Fleiss's kappa that are lower than 0.40 indicate poor agreement, values from 0.60 to 0.74 

signal intermediate to good agreement, and values higher than 0.74 point toward very good 

agreement. Similarly, discussing Cohen's kappa, Banerjee et al. (1999) evaluate agreement as 

poor for values below 0.40, fair to good between 0.40 and 0.75, and excellent for values over 

0.75. Krippendorff is most conservative and suggests that Krippendorff's alpha values greater 

than 0.79 indicate good agreement, while only tentative conclusions should be drawn for values 

between 0.667 and 0.79 (Krippendorff 2004: 241). We thus adopt the following terminology: 

• Poor agreement - everything less than 0.40 

• Fair to intermediate agreement - values between 0.40 (fair) and 0.60 (intermediate) 

• Good agreement - values from 0.61 to 0.74 

• Very good agreement - values above 0.74 

 

Table 1 presents the global reliability results by variable. The table shows that nominal values 

of all measurements are very similar. This is a good sign since an analysis of the aspects driving 

the differences would have been required otherwise. As can be seen in the table, level of 

agreement among the 11 coders is very good for Event Violence, good for Participant Deaths, 

Event Direction and Actor Type, fair to intermediate for Participant Number, Target Type and 

Actor Side, and poor only for Target Side. 
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Table 1: Intercoder reliability for 11 coders by variable 

 Cohen kappa Fleiss kappa Krippendorff alpha 

Actor.1.Type 0.63 0.63 0.63 

Actor.1.Side 0.58 0.58 0.59 

Target.1.Type 0.55 0.55 0.55 

Target.1.Side 0.39 0.39 0.40 

Event.Direction 0.70 0.70 0.69 

Event.Violence 0.79 0.79 0.79 

Participant.Number 0.44 0.44 0.42 

Participant.Deaths 0.72 0.72 0.73 

Location.Precision 0.57 0.57 0.59 

 

The relatively lower scores for Actor/Target Type and Side could stem from the greater 

complexity of these variables since they require a fair amount of interpretation for coding. In 

addition, Actor/Target type, but also Location Precision consist of more categories than other 

variables, requiring coders to choose one of seven categories, which will generally produce 

lower scores. Also interesting is that Target type/side variables have lower scores despite these 

variables having the same coding structure as Actor variables. We investigate these aspects 

further in the appendix, where we zoom in and examine agreement for each variable by 

category. These results show that clearer distinctions between “unknown” and “nonstate actor, 

citizens” categories could help improve agreement for Actor and Target type variables. 

Table 2 compares agreement by variable category, which can help explain why some variables 

have low overall scores. Table 5 points to a number of aspects of the current coding scheme 

that could lower agreement among coders. First, the -99 ("unknown") category seems be 

responsible for the lower score of the type variable. Agreement for each category is higher than 

the overall agreement shown in Table 1 except for the categories -99 ("unknown") and 2 

("nonstate actor, citizens"). The coding scheme should thus be more explicit in establishing 

the boundary between "unknown" and "citizens" categories. Coders may be using these two 

categories as residual category but not consistently. Similarly, the -99 category is also 

responsible for lowering the agreement on the Participant Deaths variable. Moving to the 

Target variables, Table 2 shows that Target Type categories -99 ("unknown"), 1 ("state actor") 

and 2 ("nonstate actor, civilians") suffer from lower agreement. A reason for this is likely that 

a state actor is often the symbolic target of an event (e.g. a riot) manifesting itself with actions 
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like the destruction of private properties (e.g. cars and shops). Some coders may choose to code 

civilians (immediate target) in these cases, while others choose to code the state actor (symbolic 

target). If this is the case, then the low agreement on all Target variables comes with no 

surprise. 

On the Participant Number variable, coders do not reach good levels of agreement 

except for events with a very large number of participants. This is striking since the distinction 

between the categories of this variable is supposedly very clear. Disagreement of the coders is 

not limited to some categories but involves the entire variable. Clearer guidelines about when 

and how to code this variable are required if it has to be retained in the coding structure. 

The reliability for Location Precision is very good only for the extreme precision levels. 

At first glance, it seems that the distinction between different levels of administrative units 

(first-order, second-order) is responsible for poor agreement. However, individual results in 

the tables below show that most individual scores on this variable are between good and very 

good, while coder 3 and coder 9 are doing a poor job on this particular variable, which brings 

down global agreement. 
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Table 2: Intercoder reliability for 11 coders by variable category (Fleiss's kappa) 

Categor

y 

Actor.1.Ty

pe 

Actor.1.Si

de 

Target.1.Ty

pe 

Target.1.Si

de 

Event.Directi

on 

Event.Violen

ce 

-99 0.57 0.55 0.53 0.4   

0  0.71  0.4 0.7 0.79 

1 0.78 0.54 0.52 0.36 0.7 0.79 

2 0.39  0.42    

3 0.73  0.69    

4 0.83  0.67    

5 0  0.01    

6       

Table 2 (continued) 

Category Participant.Number Participant.Deaths Location.Precision 

-99 0.43 0.35  

0  0.68  

1 0.37 0.89 0.79 

2 - 0.89 0.42 

3 0.31 - 0.23 

4 -  0.53 

5 0.73  0.33 

6   0.86 

 

Individual Reliability 

Individual analyses allow us to further investigate the relative contribution of each coder to 

global reliability scores. Table 3 shows a measure of average agreement between each coder 

and all his colleagues by variable. Table 4 reports the relevant overall reliability by variable to 

easily compare individual averages and the overall scores. This table is useful to spot coders 

whose coding differs from the majority of all others. 
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Table 3: Mean (Scott's pi) individual intercoder reliability by variable 

 

 

Table 4: Overall Fleiss's kappa from Table 1 

 Fleiss kappa 

Actor.1.Type 0.63 

Actor.1.Side 0.58 

Target.1.Type 0.55 

Target.1.Side 0.39 

Event.Direction 0.70 

Event.Violence 0.79 

Participant.Number 0.44 

Participant.Deaths 0.72 

Location.Precision 0.57 

 

As shown in Table 3, coders 4, 6 and 8 have a low average agreement with their colleagues on 

the Event Direction variable. In particular, coder 8 has an average agreement that is always 

below the overall agreement on the first 5 variables in table C3. The exercise also reveals that 

Participant Number is characterized by very low reliability scores for coders 6, 8 and 9. 

Unfortunately, the already discussed low overall agreement for Target Type and Target Side 

seems to be the result of a diffused situation of disagreement. 

 

Event Encoding: Validity  

Global Validity 

We proceed to an assessment of coding validity, meaning that we compare the variable coding 

of all coders to the Coding Gold Standard (CGS). We also assess whether validity issues align 

with reliability issues or not. Table 5 allows to make this comparison on the Global level by 

presenting the overall reliability and coding validity results side by side. 
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Table 5: Global intercoder reliability and coding validity (Fleiss's kappa) 

 Intercoder Reliability Coding Validity 

Actor.1.Type 0.63 0.71 

Actor.1.Side 0.58 0.49 

Target.1.Type 0.55 0.56 

Target.1.Side 0.39 0.34 

Event.Direction 0.70 0.56 

Event.Violence 0.79 0.82 

Participant.Number 0.44 0.42 

Participant.Deaths 0.72 0.75 

Location.Precision 0.57 0.71 

 

According to Table 5, overall coding validity is very good on Event Violence and Participant 

Deaths, good for Actor Type and Location Precision, fair to intermediate for Event Direction, 

Participant Number, Target Type and Actor Side, and poor only for Target Side. This picture 

of coding validity is quite similar to the one for intercoder reliability, with some exceptions. 

Event Direction reaches a good level of reliability (.70), but only a fair-intermediate level of 

validity (.56), and Actor Side moves from an intermediate level of reliability (.58) to a fair 

level of validity (.49). On the other hand, the Location Precision score is way better on validity 

(.71) than it is on reliability (.57). In the appendix, we also compare each individual coder to 

the GCS.  

 

Individual Validity 

We proceed to a discussion of coder validity at the individual level. In the manuscript, we 

present global validity results, while we show the contribution of individual coders by 

comparing their coding to the GCS here. 

 

Table 6: Agreement between each coder and the Coded Gold Standard (Scott's pi) 
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Table 6 shows that coder 6 has the highest levels of agreement with the gold standard except 

for the variables Participant Number (.17) and Participant Deaths (.57). Coder 8 has poor 

validity performances. Different to what emerged from the reliability assessment, coders seem 

to overall do a good job in coding the Location Precision variable. The low value for location 

precision is the result of poor performance of coder 3 and coder 9 on this variable. 

 

Conclusion 

The assessments of event identification and encoding show an encouraging picture with good 

and consistent performances in both assessments. The analyses show how in-depth analyses of 

coding quality can be useful for several reasons. First, and most importantly, they help ensure 

data quality. While this paper describes the assessment of coding quality among the initial 

coders recruited for ECAV, subsequent exercises were used throughout the project. Second, 

such an exercise can be useful to clarify coding procedures. Results from this exercise helped 

improve the clarity of the coding scheme especially with regard to actor type variables, 

participant numbers. Third, assessments can and should be used to guide the selection of high-

quality coders, since the identification and encoding decisions by individual coders did have a 

significant impact on overall scores in both assessments. We provided additional support for 

coders with lower scores and used results to inform our decisions on coder retention.  
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